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Supplementary Figure 1: Effect of k-mer length on retained data and k-mer
ambiguity

Supplementary Figure 1: As the k-mer length is varied in the range [15,25] when processing
the synthetic dataset, we observe that a longer k-mer length results in a slight decrease in data
retention (denoted by the red line which shows the ratio of number of k-mers from the read set
that were hashable to the total number of k-mers appearing in the set of reads). Simultaneously,
we observe that the ratio of the number of unique k-mers (k-mers having a unique locus of origin)
in the set of transcripts to the total number of k-mers in the set of transcripts (blue line) increases
as we make k larger. It seems that, as expected, there is a trade-off in the choice of k, with a
larger k resulting in less robustness to sequencing error but a higher fraction of unique k-mers
and smaller k-mers providing more robustness to errors in the data but at the cost of increased
ambiguity. However, since the differences are relatively small over a reasonably large range of k,
we can expect the inference procedure to be fairly robust to this parameter. We use k = 20 for
all experiments, and this is the default in Sailfish. However, we did not attempt to optimize this
parameter when performing our experiments.
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Supplementary Figure 2: Speed of counting indexed k-mers

Supplementary Figure 2: The time to count all of the k-mers and quantify transcript abundance
in an 81M read dataset (SRX016366) as function of the number of concurrent hashing threads.
Even with only a single thread, the counts for all k-mers in the dataset can be processed in 34
minutes and 26 seconds, while with 32 processing threads, all k-mers can be counted in only 1
minute and 28 seconds.
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Supplementary Note 1: Additional benefits of the Sailfish approach

By not requiring read mapping, Sailfish avoids parameters specifying, for example, the number

of mismatches to tolerate, total allowable quality of mismatched bases, gap open and extension

penalties, whether and how much to trim reads, number and quality of alignments to report from

the aligner and pass into the estimation procedure.

An additional benefit of our lightweight approach is that the size of the indexing and counting

structures required by Sailfish are a small fraction of the size of the indexing and alignment files

required by most other methods. For example, for the MAQC dataset described in Figure 2, the

total size of the indexing and count files required by Sailfish for quantification was 3.1Gb, com-

pared with much larger indexes and accompanying alignment files in BAM format used by other

approaches (e.g., the 15.5Gb index and alignment file produced by Bowtie [1]). Unlike alignment

files which grow with the number of reads, the Sailfish index files grow only with the number of

unique k-mers and the complexity of the transcriptome’s k-mer composition and are independent

of the number of reads.

A third additional benefit is that, like eXpress, the memory usage of Sailfish is bounded by

the size and complexity of the transcriptome and therefore independent of the number of reads

processed.

The k-mer-based approach allows for the creation of k-mer equivalence classes that result in a

substantial reduction in the number of variables that must be considered during the EM procedure.

For example, in the set of reference transcripts for which we estimate abundance using the Microar-

ray Quality Control [2] data (Fig.2), there are 60,504,111 k-mers (k = 20), of which 39,393,132

appear at least once in the set of reads. However, there are only 151,385 distinct equivalence

classes of k-mers with non-zero counts. Thus, our EM procedure needs to optimize the allocations

of 151,385 k-mer equivalence classes instead of 39,393,132 individual k-mers, a reduction by a

factor of 260.
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Supplementary Figure 3: Correlation plots with qPCR on human brain
tissue and synthetic data

RSEM eXpress Cufflinks

Supplementary Figure 3: Correlation plots of RSEM, eXpress and Cufflinks for the data pre-
sented in Fig. 2. Each column is labeled with the method whose output was used to produce that
column’s plots. The top row of plots show the correlation between the computed FPKM and the
qPCR-based expression estimates for the human brain tissue. The bottom row of plots shows the
correlation between the computed FPKM and the true abundance of each transcript on the synthetic
dataset. To generate the results shown here, eXpress was run using its default streaming expression
estimation algorithm.
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Supplementary Figure 4: Correlation with qPCR on universal human
reference tissue

Sailfish RSEM eXpress Cufflinks

Sailfish RSEM eXpress Cufflinks

Pearson 0.88 0.85 0.88 0.87

Spearman 0.88 0.85 0.88 0.88

Supplementary Figure 4: The accuracy of four methods on a second dataset from the MACQ [2]
study. The reads for this experiment were taken from SRA accession SRX016367 (92,524,365 35bp
single-end reads) and are from a mixture of different tissues (i.e. the Universal Human Reference
or UHR). The same set of reference transcripts were used as in Fig. 2 of the main text. The relative
accuracy and performance of the methods is similar to what we observed in the other MACQ
dataset, with Sailfish, eXpress and Cufflinks all achieving comparable accuracy (all slightly more
accurate than RSEM). Sailfish is ⇡ 33 times faster than Cufflinks, the closest method in terms of
speed.
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Supplementary Note 2: Additional details of accuracy analysis

We compare predicted abundances using correlation coefficients (Pearson & Spearman), root-

mean-square error (RMSE), and median percentage error (medPE). These metrics allow us to

gauge the accuracy of methods from different perspectives. For example, the correlation coef-

ficients measure how well trends in the true data are captured by the methods, but, because the

Pearson correlation is taken in the log scale, it discounts transcripts with zero (or very low) abun-

dance in either sample. Both eXpress and Cufflinks produced a number of outlier transcripts, with

very low but non-zero estimated abundance, which would substantially degrade some of the metrics

(particularly the RMSE). To eliminate the effect of such low-abundance outliers, we set to zero, for

all methods, any estimated K/FPKM less than or equal to 0.01, a cutoff chosen because it removed

the outliers while discarding only a small number of truly expressed transcripts. The Spearman

correlations are not log transformed and therefore include 0 or near-0 abundance transcripts in the

synthetic tests. For the qPCR-based tests, due to the relatively low number of transcripts that were

experimentally measured, only transcripts with non-zero measured and estimated expression were

included in the correlation.
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Supplementary Note 3: Parameters for simulated data

The simulated RNA-seq data was generated by the FluxSimulator [3] v1.2.1 with the following

parameters.

### Expression ###
NB_MOLECULES 5000000
REF_FILE_NAME GRCh37_annotations.gtf
GEN_DIR GRCh37/chrs
TSS_MEAN 50
POLYA_SCALE NaN
POLYA_SHAPE NaN

### Fragmentation ###
FRAG_SUBSTRATE RNA
FRAG_METHOD UR
FRAG_UR_ETA NaN
FRAG_UR_D0 1

### Reverse Transcription ###
RTRANSCRIPTION YES
RT_PRIMER RH
RT_LOSSLESS YES
RT_MIN 500
RT_MAX 5500

### Filtering ####
FILTERING YES

### Amplification ###
GC_MEAN NaN
PCR_PROBABILITY 0.05

### Sequencing ###
READ_NUMBER 150000000
READ_LENGTH 76
PAIRED_END YES
ERR_FILE 76
FASTA YES
UNIQUE_IDS NO
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Supplementary Figure 5: Within-gene relative isoform abundance accuracy

Supplementary Figure 5: Violin plots showing the distribution of relative error of the true vs.
estimated within-gene expressed isoform fractions, stratified by the number of isoforms expressed
at a non-trivial level (K/FPKM > 0.01 in the simulated data). All transcripts were first grouped by
gene, and each gene was placed into a bin labeled by the number of different isoforms expressed
with a true K/FPKM > 0.01. Each gene was converted into a vector of isoform fractions by
dividing the expression (K/FPKM) of each isoform by the total gene expression. Given the true
and estimated isoform fractions of each gene — denoted by g and ĝ respectively — the relative
error was computed as eg = kg � ĝk1. The violin plots then show the distribution of eg for each
method and for each gene category. The black bar overlaid on each violin plot denotes the median
of the distribution. Even within genes expressing multiple isoforms simultaneously, Sailfish is able
to quantify the mixture of isoforms as well as the read-mapping-based approaches.
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Supplementary Figure 6: Within-gene absolute isoform abundance accuracy

Supplementary Figure 6: This plot was generated in a fashion similar to supplementary Fig. 5
above, except that the errors in expression estimates are measured in more absolute terms. Again,
the genes are stratified based on the number of isoforms expressed with a true FPKM > 0.01.
However, we now consider g and ĝ to be, respectively, the true and estimated un-normalized vectors
of expression values (in K/FPKM) for all isoforms belonging to gene g. We then compute eg =
kg � ĝk1, and plot the distributions of eg for each method and each gene category. The black bar
overlaid on each violin plot denotes the median of the distribution. For complex, multi-isoform
genes, Sailfish is able to quantify the relative expressions (in terms of KPKM), not just the mixture,
of different isoforms as well as read-mapping-based methods.

10



Supplementary Figure 7: Robustness to mutations in reference transcripts

Supplementary Figure 7: For each of 10 independent tests, a mutated transcript set was pro-
duced by altering nucleotides randomly in the underlying genome according to a Poisson process
with rate parameter 0.05. The transcript reference sequences were then extracted from the mu-
tated genome (using the gffread tool, which is part of Cufflinks), and used as targets for ex-
pression quantification by Sailfish and eXpress. The box plots show the distribution of Pearson
(log-transformed) and Spearman correlation between the qPCR expression estimates and expres-
sion estimates produced by Sailfish and eXpress using the SRX016366 reads, but with reference
transcript sets extracted from 10 independently mutated copies of the genome. We observe that, as
expected under such a significant mutation rate, the accuracy of the quantification estimates pro-
duced by both Sailfish and eXpress are diminished with respect to their corresponding error-free
counterparts (see Fig. 2d). However, even under such a significant mutation rate, both methods
are able to infer estimates that correlate well with the qPCR-based expression values. We observe
that the median accuracy for Sailfish is higher than that of eXpress in these experiments, and the
variance of its accuracy over the 10 trials is noticeably smaller.
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Supplementary Table 1: Abundance estimation in sequence-redundant
human genes

Sailfish RSEM eXpress Cufflinks

Pearson 0.93 0.95 0.92 0.76
Spearman 0.88 0.89 0.88 0.80

RMSE 21.33 21.71 22.76 41.31
medPE 6.27 9.28 12.05 81.76

Table 1: This table shows the accuracy of Sailfish, eXpress, Cufflinks and RSEM on a sequence-
redundant subset of genes using the synthetic human expression data. To construct this sequence-
redundant set of genes, we first performed a global pairwise alignment on all of the reference
(GRCh37.73) transcripts using the ggsearch36 global alignment program, which is part of the
FASTA suite of tools. Let i(t, t 0) be the percent identity between transcripts t and t 0 as computed by
ggsearch36; we define the gene-level similarity between genes g and g0 as i(g,g0) = max i(t, t 0)
where t is a transcript of gene g and t 0 is a transcript of gene g0. Given these gene-level similarities,
we define two genes g and g0 to be highly sequence-redundant if i(g,g0) � 80. We then extracted
all pairs of highly sequence-redundant genes according to this metric and the resulting set of genes
constitutes our sequence-redundant subset. This subset of genes has the property that for every
gene g in this subset, there exists at least one other gene g0 in this subset such that i(g,g0) � 80,
though there may be more. We find that on this subset of genes, Sailfish, eXpress and RSEM
remain fairly accurate, while the accuracy of Cufflinks suffers somewhat. However, even when
quantifying abundance on significantly sequence-redundant genes, Sailfish is able to produce ac-
curate estimates, comparable to or better than those of other read-mapping-based methods.
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Supplementary Figure 8: Convergence of relative abundance estimates
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Supplementary Figure 8: The average difference between the relative abundance as estimated by
two successive applications of the EM step (Algo. 2 lines 1–2) versus iterations of the SQUAREM
algorithm (in the Universal Human Reference tissue experiment). We can see that the residual
drops off quickly, and appears to have converged before 30 iterations of the SQUAREM procedure
have been performed.
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